Identification of plant semiochemicals and characterization of new olfactory sensory neuron types in a polyphagous pest moth, Spodoptera littoralis.
نویسندگان
چکیده
Phytophagous insects use blends of volatiles released from plants to select hosts for feeding and oviposition. To behaviorally analyze complex blends, we need efficient and selective methods for elucidating neuron types, their ligands, and specificity. Gas chromatography-combined single sensillum recordings (GC-SSRs) from antennal olfactory sensilla of female moth, Spodoptera littoralis revealed 38 physiologically active peaks in the headspace volatile blends from both larvae-damaged cotton plants and lilac flowers. Using GC-combined mass spectrometry, 9 new physiologically active compounds were identified from damaged cotton and 11 from lilac compared with earlier electrophysiological studies using antennae of female S. littoralis. We characterized 14 novel classes of olfactory sensory neurons (OSNs). Among these, we found the first 2 ligands for a frequent type of short trichoid sensillum, for which no ligands were identified earlier. By using GC-SSR, a substantial increase in functional classes of OSNs and active compounds, 40% and 34% more, respectively, compared with recent studies using GC-electroantennogram or SSR using single compounds was detected. Compared with the estimated number of corresponding antennal olfactory receptors, the OSN classes now correspond to 83% of a likely maximum. The many specialist OSNs observed may facilitate behavioral confirmation of key plant volatiles in blends.
منابع مشابه
Draft Genome Sequence of Enterococcus mundtii SL 16, an Indigenous Gut Bacterium of the Polyphagous Pest Spodoptera littoralis
Citation: Chen B, Sun C, Liang X, Lu X, Gao Q, Alonso-Pernas P, Teh B-S, Novoselov AL, Boland W and Shao Y (2016) Draft Genome Sequence of Enterococcus mundtii SL 16, an Indigenous Gut Bacterium of the Polyphagous Pest Spodoptera littoralis. Front. Microbiol. 7:1676. doi: 10.3389/fmicb.2016.01676 Draft Genome Sequence of Enterococcus mundtii SL 16, an Indigenous Gut Bacterium of the Polyphagous...
متن کاملSpatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae).
Glomeruli within the antennal lobe (AL) of moths are convergence sites for a large number of olfactory receptor neurons (ORNs). The ORNs target single glomeruli. In the male-specific cluster of glomeruli, the macroglomerular complex (MGC), the input is chemotypic in that each glomerulus of the MGC receives information about a specific component of the conspecific female sex pheromone. Little is...
متن کاملIdentification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes
Insect chemosensory genes have been considered as potential molecular targets to develop alternative strategies for pest control. However, in Spodoptera exigua, a seriously polyphagous agricultural pest, only a small part of such genes have been identified and characterized to date. Here, using a bioinformatics screen a total of 79 chemosensory genes were identified from a public transcriptomic...
متن کاملMolecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families
The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the s...
متن کاملIdentification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis
BACKGROUND The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical senses
دوره 39 8 شماره
صفحات -
تاریخ انتشار 2014